萌主天下无敌提示您:看后求收藏(350中文350zw.com),接着再看更方便。
训练深度网络需要大量的计算力和计算时间;
过拟合问题始终伴随着神经网络的训练过程,学习过慢的问题始终困扰着人们,这容易让人们产生一种失控的恐惧,同时也对这项技术在一些重要场合的进一步应用制造了障碍。
而BetaCat的故事,所讲的就是一个人工智能程序,通过自我学习,最终逐渐统治世界的故事。
那么,现在的人工智能技术的发展,会导致这种情况发生吗?这恐怕还不太可能。一般人认为,大概有两个重要因素:
第一,现在的人工智能,它的自我学习还是限定在人们指定的方式,只能学习解决特定的问题,仍然不是通用的智能。
第二,现在对于人工智能的训练过程,需要人们为其输入规整化的训练数据,系统的输入输出仍然对于数据的格式要求很严格,这也意味着,即使把人工智能程序连到网上,它也不能像BetaCat那样对于互联网上海量的非结构化数据进行学习。
然而这仅仅是对普通的人工智能罢了,但是对起源这样真正的网络智能生命来说,以上两点要求它完全都能够做到。