戴建文提示您:看后求收藏(350中文350zw.com),接着再看更方便。
《第 228 章 柯西中值定理的精彩呈现》
新的一天,阳光透过窗户洒在教室的课桌上,同学们早早地坐在座位上,期待着戴浩文先生带来新的数学知识。
戴浩文先生精神抖擞地走进教室,微笑着看着大家,说道:“同学们,上节课我们深入探讨了拉格朗日中值定理,今天让我们一起迎接新的挑战——柯西中值定理。”
同学们的目光中充满了好奇和期待。
戴浩文先生转身在黑板上写下柯西中值定理的表达式:若函数 f(x),g(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且 g'(x)≠0,则在(a,b)内至少存在一点 ξ,使得 [f(b) - f(a)]\/[g(b) - g(a)] = f'(ξ)\/g'(ξ) 。
“同学们,大家先观察一下这个定理的表达式,想想它和我们之前学的拉格朗日中值定理有什么相似和不同之处?”戴浩文先生问道。
一位同学举手回答:“先生,柯西中值定理看起来更复杂了,涉及到两个函数。”
戴浩文先生点头表示肯定:“说得对,这正是柯西中值定理的特点之一。那大家再思考一下,为什么会出现两个函数呢?”
教室里陷入了短暂的沉默,随后又有一位同学站起来说:“先生,是不是因为在某些情况下,两个函数的关系能更准确地描述一些现象?”
戴浩文先生笑着回答:“非常好!那我们通过具体的例子来深入理解一下。”
他在黑板上写下两个函数:f(x) = x^2 + 1,g(x) = x + 1,在区间[0, 2]上。